17 resultados para Thiopurine Methyltransferase

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 16 y.o. fully ambulant boy born to consanguineous Indian parents, presented for assessment of a fragility femoral neck fracture sustained against a background of autism and moderately severe intellectual disability. He had a past history of infantile eczema, and epilepsy treated with anticonvulsants from 2 to 10 years of age, with no further seizures following cessation of anticonvulsants. He had a thin body habitus (see Table 1) with long fingers and a high arched palate. He had no speech and negligible social interaction, but physical examination was otherwise unremarkable. Positive investigations revealed an undetectable serum creatinine and a urinary metabolic screen which showed an elevated GUA:Phe of 160 (< 36) and a decreased creatinine of 0.3 mmol/l (1.2–29.5) consistent with the diagnosis of guanidinoacetate methyltransferase(GAMT) deficiency. He was commenced on oral creatine 5 g three times daily. Despite improvement in physical activity, height and bone density, there was no discernable improvement in his intellectual functioning. Proton and phosphorous brain and leg magnetic resonance spectroscopy(MRS) was performed at baseline and showed an increased inorganic phosphorus peak and decreased phosphocreatine synthesis in brain and decreased creatine concentration in muscle. Following creatine treatment total brain creatine(1H-MRS) and phosphocreatine/ATP ratio (31P-MRS) content increased to 30% and 60% of control values, respectively. Brain GUA returned to normal levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human memory is a complex neurocognitive process. By combining psychological and molecular genetics expertise, we examined the APOE ε4 allele, a known risk factor for Alzheimer's disease, and the COMT Val 158 polymorphism, previously implicated in schizophrenia, for association with lowered memory functioning in healthy adults. To assess memory type we used a range of memory tests of both retrospective and prospective memory. Genotypes were determined using RFLP analysis and compared with mean memory scores using univariate ANOVAs. Despite a modest sample size (n=197), our study found a significant effect of the APOE ε4 polymorphism in prospective memory. Supporting our hypothesis, a significant difference was demonstrated between genotype groups for means of the Comprehensive Assessment of Prospective Memory total score (p=0.036; ε4 alleles=1.99; all other alleles=1.86). In addition, we demonstrate a significant interactive effect between the APOE ε4 and COMT polymorphisms in semantic memory. This is the first study to investigate both APOE and COMT genotypes in relation to memory in non-pathological adults and provides important information regarding the effect of genetic determinants on human memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MGMT is the primary vehicle for cellular removal of alkyl lesions from the O-6 position of guanine and the O-4 position of thymine. While key to the maintenance of genomic integrity, MGMT also removes damage induced by alkylating chemotherapies, inhibiting the efficacy of cancer treatment. Germline variants of human MGMT are well-characterized, but somatic variants found in tumors were, prior to this work, uncharacterized. We found that MGMT G132R, from a human esophageal tumor, and MGMT G156C, from a human colorectal cancer cell line, are unable to rescue methyltransferase-deficient Escherichia coli as well as wild type (WT) human MGMT after treatment with a methylating agent. Using pre-steady state kinetics, we biochemically characterized these variants as having a reduced rate constant. G132R binds DNA containing an O6-methylguanine lesion half as tightly as WT MGMT, while G156C has a 40-fold decrease in binding affinity for the same damaged DNA versus WT. Mammalian cells expressing either G132R or G156C are more sensitive to methylating agents than mammalian cells expressing WT MGMT. G132R is slightly resistant to O6-benzylguanine, an inhibitor of MGMT in clinical trials, while G156C is almost completely resistant to this inhibitor. The impared functionality of expressed variants G132R and G156C suggests that the presence of somatic variants of MGMT in a tumor could impact chemotherapeutic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence have implicated the catechol-O-methyltransferase (COMT) gene as a candidate for schizophrenia (SZ) susceptibility, not only because it encodes a key dopamine catabolic enzyme but also because it maps to the velocardiofacial syndrome region of chromosome 22q11 which has long been associated with SZ predisposition. The interest in COMT as a candidate SZ risk factor has led to numerous case-control and family-based studies, with the majority placing emphasis on examining a functional Val/Met polymorphism within this enzyme. Unfortunately, these studies have continually produced conflicting results. To assess the genetic contribution of other COMT variants to SZ susceptibility, we investigated three single-nucleotide polymorphisms (SNPs) (rs737865, rs4633, rs165599) in addition to the Val/Met variant (rs4680) in a highly selected sample of Australian Caucasian families containing 107 patients with SZ. The Val/Met and rs4633 variants showed nominally significant associations with SZ (P<0.05), although neither of the individual SNPs remained significant after adjusting for multiple testing (most significant P=0.1174). However, haplotype analyses showed strong evidence of an association; the most significant being the three-marker haplotype rs737865-rs4680-rs165599 (global P=0.0022), which spans more than 26 kb. Importantly, conditional analyses indicated the presence of two separate and interacting effects within this haplotype, irrespective of gender. In addition, our results indicate the Val/Met polymorphism is not disease-causing and is simply in strong linkage disequilibrium with a causative effect, which interacts with another as yet unidentified variant approximately 20 kb away. These results may help explain the inconsistent results reported on the Val/Met polymorphism and have important implications for future investigations into the role of COMT in SZ susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic modifiers are the proteins involved in establishing and maintaining the epigenome of an organism. They are particularly important for development. Changes in epigenetic modifiers have been shown be lethal, or cause diseases. Our laboratory has developed an ENU mutagenesis screen to produce mouse mutants displaying altered epigenetic gene silencing. The screen relies on a GFP transgene that is expressed in red blood cells in a variegated manner. In the orginal transgenic FVB mice expression occurs in approximately 55% of red blood cells. During the course of my Masters, I characterised four different Mommes (Modifiers of murine metastable epiallele), MommeD32, MommeD33, MommeD35 and MommeD36. For each Momme, I identified the underlying mutation, and observed the corresponding phenotype. In MommeD32 the causative mutation is in Dnmt1, (DNA methyltransferase 1). This gene was previously identified in the screen, as MommeD2, and the new allele, MommeD32 has a change in the BAH domain of the protein. MommeD33 is the result of a change at the transgene itself. MommeD35 carries a mutation in Suv39h1 (suppressor of variegation 3-9 homolog 1). This gene has not previously been identified in the screen, but it is a known epigenetic modifier. MommeD36 had the same ENU treated sire as MommeD32, and I found that it has the same mutation as MommeD32. These mutant strains provide valuable tools that can be used to further our knowledge of epigenetic reprogramming. An example being the cancer study done with MommeD9 which has a mutation in Trim28. By crossing MommeD9+/- mutant mice with Trp53+/- mice, it can be seen if Trim28 has an effect on the rate of tumour genesis. However no clear effect of Trim28 haploinsufficiency can be observed in Trp53+/- mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background IL-23 is a member of the IL-6 super-family and plays key roles in cancer. Very little is currently known about the role of IL-23 in non-small cell lung cancer (NSCLC). Methods RT-PCR and chromatin immunopreciptiation (ChIP) were used to examine the levels, epigenetic regulation and effects of various drugs (DNA methyltransferase inhibitors, Histone Deacetylase inhibitors and Gemcitabine) on IL-23 expression in NSCLC cells and macrophages. The effects of recombinant IL-23 protein on cellular proliferation were examined by MTT assay. Statistical analysis consisted of Student's t-test or one way analysis of variance (ANOVA) where groups in the experiment were three or more. Results In a cohort of primary non-small cell lung cancer (NSCLC) tumours, IL-23A expression was significantly elevated in patient tumour samples (p<0.05). IL-23A expression is epigenetically regulated through histone post-translational modifications and DNA CpG methylation. Gemcitabine, a chemotherapy drug indicated for first-line treatment of NSCLC also induced IL-23A expression. Recombinant IL-23 significantly increased cellular proliferation in NSCLC cell lines. Conclusions These results may therefore have important implications for treating NSCLC patients with either epigenetic targeted therapies or Gemcitabine. © 2012 Elsevier Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic regulation of gene expression is an important event for normal cellular homeostasis. Gene expression may be "switched" on or "turned" off via epigenetic means through adjustments in DNA architecture. These structural alterations result from changes to the DNA methylation status in addition to histone posttranslational modifications such as acetylation and methylation. Drugs which can alter the status of these epigenetic markers are currently undergoing clinical trials in a wide variety of diseases, including cancer.We illustrate the treatment of cell lines with histone deacetylase (HDi) and DNA methyltransferase inhibitors and the subsequent RNA isolation and reverse transcriptase polymerase chain reaction for several members of the CXC (ELR(+)) chemokine family. In addition we describe a chromatin immunoprecipitation assay to determine the association between chromatin transcription markers and DNA following pretreatment of cell cultures with an HDi, Trichostatin A (TSA). This assay allows us to determine whether treatment with TSA dynamically remodels the promoter region of our selected genes, as judged by the differences in the PCR product between our treated and untreated samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein arginine methyltransferases (PRMTs) methylate arginine residues on histones and target transcription factors that play critical roles in many cellular processes, including gene transcription, mRNA splicing, proliferation, and differentiation. Recent studies have linked PRMT-dependent epigenetic marks and modifications to carcinogenesis and metastasis in cancer. However, the role of PRMT2-dependent signaling in breast cancer remains obscure. We demonstrate PRMT2 mRNA expression was significantly decreased in breast cancer relative to normal breast. Gene expression profiling, Ingenuity and protein-protein interaction network analysis after PRMT2-short interfering RNA transfection into MCF-7 cells, revealed that PRMT2-dependent gene expression is involved in cell-cycle regulation and checkpoint control, chromosomal instability, DNA repair, and carcinogenesis. For example, PRMT2 depletion achieved the following: 1) increased p21 and decreased cyclinD1 expression in (several) breast cancer cell lines, 2) decreased cell migration, 3) induced an increase in nucleotide excision repair and homologous recombination DNA repair, and 4) increased the probability of distance metastasis free survival (DMFS). The expression of PRMT2 and retinoid-related orphan receptor-γ (RORγ) is inversely correlated in estrogen receptor-positive breast cancer and increased RORγ expression increases DMFS. Furthermore, we found decreased expression of the PRMT2-dependent signature is significantly associated with increased probability of DMFS. Finally, weighted gene coexpression network analysis demonstrated a significant correlation between PRMT2-dependent genes and cell-cycle checkpoint, kinetochore, and DNA repair circuits. Strikingly, these PRMT2-dependent circuits are correlated with pan-cancer metagene signatures associated with epithelial-mesenchymal transition and chromosomal instability. This study demonstrates the role and significant correlation between a histone methyltransferase (PRMT2)-dependent signature, RORγ, the cell-cycle regulation, DNA repair circuits, and breast cancer survival outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methylation at promoter CpG islands (CGI) is an epigenetic modification associated with inappropriate gene silencing in multiple tumor types. In the absence of a human pituitary tumor cell line, small interfering RNA-mediated knockdown of the maintenance methyltransferase DNA methyltransferase (cytosine 5)-1 (Dnmt1) was used in the murine pituitary adenoma cell line AtT-20. Sustained knockdown induced reexpression of the fully methylated and normally imprinted gene neuronatin (Nnat) in a time-dependent manner. Combined bisulfite restriction analysis (COBRA) revealed that reexpression of Nnat was associated with partial CGI demethylation, which was also observed at the H19 differentially methylated region. Subsequent genome-wide microarray analysis identified 91 genes that were significantly differentially expressed in Dnmt1 knockdown cells (10% false discovery rate). The analysis showed that genes associated with the induction of apoptosis, signal transduction, and developmental processes were significantly overrepresented in this list (P < 0.05). Following validation by reverse transcription-PCR and detection of inappropriate CGI methylation by COBRA, four genes (ICAM1, NNAT, RUNX1, and S100A10) were analyzed in primary human pituitary tumors, each displaying significantly reduced mRNA levels relative to normal pituitary (P < 0.05). For two of these genes, NNAT and S100A10, decreased expression was associated with increased promoter CGI methylation. Induced expression of Nnat in stable transfected AtT-20 cells inhibited cell proliferation. To our knowledge, this is the first report of array-based "epigenetic unmasking" in combination with Dnmt1 knockdown and reveals the potential of this strategy toward identifying genes silenced by epigenetic mechanisms across species boundaries.